首页 资料分类 用户榜 | 积分说明    

  ·AVO-sensitive semblance analysis


资料星级: 资料格式:pdf
上 传 者:zhaoweiping 下载次数:4
上传时间:2010-01-14 11:56:54

1分
639KB
推荐本资料到: 开心网 人人 豆瓣 新浪
收藏  举报  
  发送给好友

  详细介绍: 发表评论   
AVO-sensitive semblance analysis for wide-azimuth data

Main Content:

Conventional semblance-based moveout analysis models prestack reflection data
with events that have hyperbolic moveout and no amplitude variation with offset
(AVO). It has been shown that substantial amplitude variation and even phase
change with offset do not significantly compromise the semblance operator.
However, polarity reversal associated with a change in the sign of the reflection
coefficient may cause conventional semblance to fail. An existing modification
of the semblance operator that takes amplitude variations into account (so-
called “AK semblance”) is limited to narrow-azimuth data and cannot handle
nonhyperbolic moveout.
Here, we extend the AK semblance algorithm to long-spread (nonhyperbolic)
moveout and 3D multiazimuth data. To preserve velocity resolution in the pres-
ence of substantial AVO signature, we keep the ratio K of the AVO gradient and
intercept constant within each semblance window. In the presence of azimuthal
anisotropy, however, the parameter K has to be azimuthally dependent. In our
implementation, the modified semblance operator is combined with a nonhy-
perbolic moveout inversion algorithm devised for wide-azimuth data.
Synthetic tests confirm that the distortions in moveout analysis caused by po-
larity reversals are more common for long-spread data. Conventional semblance
produces substantial errors in both the NMO ellipse and azimuthally varying
parameter  not just for type 2 AVO response, but also for some models with
type 1 AVO. In contrast, the AK semblance algorithm gives accurate estimates
of the moveout parameters even when the position of the polarity reversal varies
with azimuth. The AK method not only helps to flatten wide-azimuth reflection
events prior to stacking and azimuthal AVO analysis, but also provides input
parameters for the anisotropic geometrical-spreading correction.
  该用户还有这些资料: 更多   

应用地震多属性反演与随机模拟技术_省略...

准噶尔盆地西北缘辫状河沉积模式探_省略...

北部上侏罗统辫状河体系沉积特征_郭佳

坳陷湖盆斜坡带辫状河砂体分布与有_省略...

碳酸盐岩储层地震信息响应及横向预测

如何提高产层深度预测的准确度

全数字地震叠前弹性交会技术及应用

强屏蔽层下弱反射储层特征分析及识别方法

利用地震信息评价陆相盆地岩性圈闭的关键...


 
  其他相关资料: 更多   

201302基于CUDA的转换波Kir...

201301基于MPI和CUDA的转换...

avo分析最新

AVO正演程序

AVO的基本原、方法及其应用

avo叠前反演的应用

稳健估计算法求取AVO截距和梯度

AVO截距与梯度(

基于AVO的属性分析