我国天然气直接转化利用研究获重大突破

[加入收藏][字号: ] [时间:2014-05-12  来源:中化新网  关注度:0]
摘要:   从中国科学院大连化学物理研究所获悉,近日,该所包信和院士团队基于纳米限域催化的新概念,创造性地构建了硅化物晶格限域的单铁中心催化剂,成功地实现了甲烷在无氧条件下选择活化,一步高效生产乙烯、芳烃和氢气等高值化学品。 ...

  从中国科学院大连化学物理研究所获悉,近日,该所包信和院士团队基于“纳米限域催化”的新概念,创造性地构建了硅化物晶格限域的单铁中心催化剂,成功地实现了甲烷在无氧条件下选择活化,一步高效生产乙烯、芳烃和氢气等高值化学品。

 

  储量相对丰富和价格低廉的天然气替代石油生产液体燃料和基础化学已成了学术界和产业界研究和发展的重点。迄今为此,天然气的转化利用通常采用二步法:首先,在高温条件下通过混合氧气、二氧化碳或水蒸汽,将天然气中的甲烷分子重整为含一定比例的一氧化碳和氢气分子的合成气(SynGas);随后,或采用由德国科学家上世纪20年代发明的费托(F-T合成)方法,在特定的催化剂上将合成气转化为高碳的烃类分子(油品和基础化学品等);或先由合成气制备甲醇,再经微孔分子筛催化剂脱水,生产烯烃和其他化学品。

 

  这类传统的甲烷转化路线冗长,投资和消耗高,尤为突出的问题是,由于采用了氧分子作为甲烷活化的助剂或介质,过程中不可避免地形成和排放大量温室气体二氧化碳,一方面影响生态环境,另一方面致使总碳的利用率大大降低,通常不会超过一半。因此,人们一直都在努力探索天然气直接转化利用的有效方法与过程。

 

  众所周知,具有四面体对称性的甲烷分子是自然界中最稳定的有机小分子,它的选择活化和定向转化是一个世界性难题,被誉为是催化乃至化学领域的 “圣杯”,长期以来一直是国内外科学家研究的主题。现有的实验表明,甲烷分子C-H键的有效活化通常都需要采用强氧化剂(如强酸等)或高温氧原子,甚至要有强烈的外场(如等离子体、微波和激光等)辅助。由于这类方法存在效率低下、化学选择性差和环境不友好等缺陷,迄今为此,还没有真正实现工业化生产的实例。

 

  在二十多年甲烷催化转化研究的基础上,包信和团队将具有高催化活性的单中心低价铁原子通过两个碳原子和一个硅原子镶嵌在氧化硅或碳化硅晶格中,形成高温稳定的催化活性中心;甲烷分子在配位不饱和的单铁中心上催化活化脱氢,获得表面吸附态的甲基物种,进一步从催化剂表面脱附形成高活性的甲基自由基,随后在气相中经自由基偶联反应生成乙烯和其它高碳芳烃分子,如苯和萘等。在反应温度1090℃和空速21.4L gcat-1·h-1条件下,甲烷的单程转化率达48.1%,乙烯的选择性为48.4%,所有产物(乙烯、苯和萘)的选择性> 99%。在60小时的寿命评价过程中,催化剂保持了极好的稳定性。与天然气转化的传统路线相比,该研究彻底摒弃了高耗能的合成气制备过程,大大缩短了工艺路线,反应过程本身实现了二氧化碳的零排放,碳原子利用效率达到100%。

 

  各领域科研人员共同合作,利用上海同步辐射光源和紫外软电离分子束飞行质谱等手段对催化过程进行了原位监测,并结合高分辨电子显微镜和DFT理论模拟,从原子水平上认识了催化剂单铁中心活性位的结构、自由基表面引发和气相偶联生成产物的反应机制,进而揭示了单铁活性中心抑制甲烷深度活化从而避免积碳的机理,首次将单中心催化的概念引入高温催化反应。

 

  德国巴斯夫集团副总裁穆勒对该过程高度评价,认为是一项“即将改变世界”的新技术,未来的推广应用将为天然气、页岩气的高效利用开辟一条全新的途径。中石化原高级副总裁曹湘洪院士认为,这是天然气利用研究中又一个具有里程碑意义的突破,尽管该研究的产业化还有不少工程技术难题要解决,然而,一旦取得成功,将会对我国乃至世界石化工业产生重大影响。



          您的分享是我们前进最大的动力,谢谢!
关键字: 天然气 
关于我们 | 会员服务 | 电子样本 | 邮件营销 | 网站地图 | 诚聘英才 | 意见反馈
Copyright @ 2012 CIPPE.NET Inc All Rights Reserved 全球石油化工网 版权所有
京ICP证120803号 京ICP备05086866号-8 京公网安备110105018350