在新能源领域中,氢能已普遍被认为是一种最理想的新世纪无污染的绿色能源,这是因为氢燃烧,水是它的唯一产物。氢是自然界中最丰富的元素,它广泛地存在于水、矿物燃料和各类碳水化合物中。
然而,传统的制氢方法,需要消耗巨大的常规能源,使氢能身价太高,大大限制了氢能的推广应用。于是科学家们很快想到利用取之不尽、廉价的太阳能作为氢能形成过程中的一次能源,使氢能开发展现出更加广阔的前景。科学家们发现了以光催化材料为“媒介”,能利用太阳能把水裂解为燃料电池所必需的氧和氢,科学家称这种仅用阳光和水生产出氢和氧的技术为“人类的理想技术之一”。
太阳能光催化制氢技术的原理
我们知道,在标准状态下把1mol水(18克)分解成氢气和氧气需要约285kJ的能量,太阳能辐射的波长范围是200~2600nm,对应的光子能量范围是400~45kJ/mol。但是水对于可见光至紫外线是透明的,并不能直接吸收太阳光能。因此,想用光裂解水就必须使用光催化材料,科学家们往水中加入一些半导体光催化材料,通过这些物质吸收太阳光能并有效地传给水分子,使水发生光解。以二氧化碳钛半导体光催化材料为例,当太阳光照射二氧化化钛时,其价带上的电子(e-)就会受激发跃迁至导带,同时在价带上产生相应的空穴(h+),形成了电子空穴对。产生的电子(e-)、空穴(h+)在内部电场作用下分离并迁移到粒子表面。水在这种电子-空穴对的作用下发生电离生成氢气和氧气。
太阳能光催化制氢技术的研究现状
技术研究的关键主要集成电路中在光催化材料的研究方面,光催化材料要满足以下几个条件:(1)光催化材料裂解水效率较高;(3)光催化材料最好要可能利用太阳所有波段中的能量。光裂解水制氢以半导体为催化材料,一般为金属氧化物和金属硫化物,然而,目前研究者一般均选用二氧化钛作为光催化氧化的稳定性好,但是由于二氧化钛无臭、无毒,化学稳定性好,但是由于二氧化钛的禁带宽度较宽,只能利用太阳光中的紫外光部分,而紫外光只占太阳光总能量的4%,如何减低光催化材料的禁带宽度,使之能利用太阳光中可见光部分(占太阳能总能量的43%),是太阳能裂解水制氢技术的关键。
国内研究现状
国内研究太阳能裂解水不是很多,但是近几年来有明显增加趋势。最近,这项研究又有了新的大突破。
大连物理化学研究所李灿研究组在2003年7月《化学通讯》上报道,发现了一种新的光催化材料,它由铟锌的硫化物组成,能在太阳可见光照射下裂解水,连续产生氢气和氧气,并且效率保持稳定。
2003年9月南京大学环境材料与再生能源研究中心主任邹志刚通过与日本产业技术综合研究所的合作研究,向社会公布了"可见光响应型水全分解光催化剂"这一重大科研成果,研制出一种新型的光催化材料,它由铟钽氧化物组成,表面有一层镍氧化物。这种催化材料在可见光波段起作用,它的催化效率和使用寿命都高于现有的同类催化剂。在实验中,该所科学家采用阳光中波长为402nm的可见光对水进行分解,结果氧和氢的生成率为0.66%。据介绍,如果应用纳米技术改进催化材料的结构特别是表面结构,可把水的分解率提高百倍。并首次完成了在户外太阳光下光催化分解水制氢的实验,这是国内开展新型环境材料和可再生能源研究取得的重要阶段性成果。
通过近几年来押内外的研究,开发出的光催化材料已接近实用化了。
太阳能光催化制氢技术的发展应用前景
水和阳光可称是取之不尽的物质。从水中获得的氢作为能源使用后又回到了水的形态,是一种完全的可持续开发和利用。
考虑到近几年太阳能光解水制氢技术的迅猛发展和巨大突破,有可能在未来的二三十年内就走向实用化,使太阳能光解水制氢产业化成为现实。该技术的应用将带来显著的经济效益、环境效益和社会效益,并带给人类使用能源的革命性变革。